2-QUINAZOLYLGUANIDINES IN HETEROCYCLIZATION REACTIONS. 2*. CONDENSATION WITH α,β-UNSATURATED CARBONYL COMPOUNDS

Kh. S. Shikhaliev, A. V. Falaleev, G. I. Ermolova, and A. S. Solov'ev

4,6,6-Trimethyl-1,4-dihydropyrimidines have been synthesized by condensation of 2-quinazolylguanidines with mesityl oxide. The analogous reaction with benzalacetone leads to unstable 4-methyl-6phenyl-1,4-dihydropyrimidines, which are oxidized to the corresponding 4-methyl-6-phenylpyrimidines.

Keywords: 4-methyl-6-phenyl-1,4-dihydropyrimidines, 4-methyl-6-phenylpyrimidines, mesityl oxide, 4,6,6-trimethyl-1,4-dihydropyrimidines, 2-quinazolylguanidines, condensation, oxidation.

This report is devoted to study of cyclization of 6-R-4-methyl-2-quinazolylguanidines **1a-c** with α , β -unsaturated carbonyl compounds. Available data on the direction and especially the products of such a reaction with simple guanidines are contradictory [2-4].

It has been established that quinazolylguanidines **1a-c** easily react with mesityl oxide to form only a single product. Obviously the reaction begins with a Michael's addition of an imino group of compounds **1** at the β -position of the unsaturated bond of the mesityl oxide, with subsequent enolization of the intermediate guanidino ketones **2**, which in the last step undergo ring closure with removal of water to the final 6-R-4-methyl-2-(4,6,6-trimethyl-1,4-dihydropyrimidinyl-2-amino)quinazolines **3a-c**. The latter are stable to oxidation (aromatization) due to the presence of a *gem*-dimethyl group in the 4 position.

1-3 a R = H, **b** R = Me, **c** R = MeO

* For Communication 1, see [1].

Voronezh State University, Voronezh 394693, Russia. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 2, pp. 232-234, February, 2002. Original article submitted December 17, 1999.

Com- pound	Emperical formula	Found, % Calculated, %				mp, °C	¹ H NMR spectrum, δ, ppm	Yield, %
		M*	С	Н	Ν			
3a	$C_{16}H_{19}N_5$	$\frac{281}{\overline{281.36}}$	<u>68.32</u> 68.30	<u>6.76</u> 6.77	<u>24.91</u> 24.93	139-140	1.30 (6H, s, 4',4'-Me ₂); 1.83 (3H, s, 6'-Me); 2.75 (3H, s, 4-Me); 4.42 (1H, s, 5'-H); 7.20-7.50 (4H, m, H _{arom}); 9.50 (2H, s, NH)	46
3b	C ₁₇ H ₂₁ N ₅	<u>295</u> 295.39	<u>69.15</u> 69.14	<u>7.12</u> 7.13	$\frac{23.73}{23.75}$	183-184	1.30 (6H, s, 4',4'-Me ₂); 1.85 (3H, s, 6'-Me); 2.41 (3H, s, 6-Me); 2.81 (3H, s, 4-Me); 4.41 (1H, 5'-H); 7.30-7.70 (3H, m, H _{arom}); 9.65 (2H, s, NH)	48
3c	C ₁₇ H ₂₁ N ₅ O	$\frac{311}{311.39}$	<u>65.60</u> 65.62	<u>6.75</u> 6.75	$\frac{22.51}{22.50}$	145-146	1.35 (6H, s, 4',4'-Me ₂); 1.81 (3H, s, 6'-Me); 2.70 (3H, s, 4-Me); 3.90 (3H, s, OMe); 4.42 (1H, s, 5'-H); 7.20-7.50 (3H, m, H _{arom}); 9.60 (2H, s, NH)	51
5a	C ₂₀ H ₁₇ N ₅	$\frac{327}{327.39}$	$\frac{73.40}{73.42}$	$\frac{5.20}{5.18}$	$\frac{21.41}{21.39}$	170-171	2.44 (3H, s, 6'-Me); 2.83 (3H, s, 4-Me); 7.40-8.30 (11H, m, H _{arom}); 9.60 (1H, s, NH)	47
5b	C ₂₁ H ₁₉ N ₅	$\frac{341}{341.42}$	$\frac{73.82}{73.88}$	<u>5.55</u> 5.61	$\frac{20.60}{20.51}$	175-176	2.44 (3H, s, 6'-Me); 2.83 (3H, s, 4-Me); 2.41 (3H, s, 6-Me); 9.60 (1H, s, NH); 7.40-8.30 (10H, m, H _{arom})	40
5c	$C_{21}H_{19}N_5O$	$\frac{357}{357.42}$	$\frac{70.59}{70.61}$	$\frac{5.32}{5.30}$	$\frac{19.61}{19.59}$	102-104	2.45 (3H, s, 6'-Me); 2.85 (3H, s, 4-Me); 3.90 (3H, s, OMe); 9.62 (1H, s, NH); 7.40-8.30 (10H, m, H _{arom})	46

TABLE 1. Physicochemical and Spectral Characteristics of Substituted Dihydropyrimidinylaminoquinazolines **3a-c** and Pyrimidinylaminoquinazolines **5a-c**

* By mass spectrometry.

Condensation of quinazolylguanidines **1a-c** with benzalacetone occurs *via* an analogous mechanism to form intermediate 1,4-dihydropyridinyl-2-amino-substituted quinazolines **4a-c**. But the latter, in contrast to products **3**, are unstable and even under the reaction conditions (dimethylsulfoxide, oxygen) are oxidized to the corresponding 6-R-4-methyl-2-(4-methyl-6-phenylpyrimidinyl-2-amino)quinazolines **5a-c**, which we synthesized also by reaction of quinazolylguanidines **1a-c** with 4-phenyl-2-butynone. The characteristics of the synthesized compounds are presented in Table 1.

4, 5 a R = H, **b** R = Me, **c** R = MeO

EXPERIMENTAL

The course of the reaction and the purity of the substances obtained were monitored by TLC on Silufol UV-254 plates (eluent: chloroform, ethylacetate). The ¹H NMR spectra were taken on a Bruker AC-300 (300 MHz) in DMSO-d₆, internal standard TMS. The mass spectra were taken on an LKB-9000, electron ionizing energy 70 eV.

The starting 6-R-4-methyl-2-quinazolylguanidines **1a-c** were synthesized according to the known procedure [5].

6-R-4-Methyl-2-(4,6,6-trimethyl-1,4-dihydropyrimidinyl-2-amino)quinazolines (3a-c). A mixture of quinazolylguanidine **1** (0.015 mol) and mesityl oxide (0.02 mol) in DMSO (40 ml) was held at 100°C for 12 h and then cooled down and poured into water. The precipitate was filtered off and recrystallized from methanol.

6-R-4-Methyl-2-(4-methyl-6-phenylpyrimidinyl-2-amino)quinazolines (5a-c). Benzalacetone (0.02 mol) was added to compound 1 (0.015 mol) in DMSO (40 ml). The mixture was held for 8-12 h at 100°C and then cooled down and poured into water. The precipitate was filtered off and dried. Product 5 was isolated from the precipitate by column chromatography on Al_2O_3 (eluent: chloroform) and was recrystallized from ethylacetate.

REFERENCES

- 1. Kh. S. Shikhaliev, A. V. Falaleev, G. I. Ermolova, and A. S. Solov'ev, *Khim. Geterotsikl. Soedin.*, 934 (1999).
- 2. V. P. Maklaev and A. L. Vais, *Khim. Geterotsikl. Soedin.*, 1555 (1975).
- 3. W. Wendelien and A. Harler, *Monatsh. Chem.*, **105**, 563 (1975).
- 4. W. Wendelien and A. Harler, *Monatsh. Chem.*, **106**, 1479 (1975).
- 5. J. P. Brown, J. Chem. Soc. (C), 1074 (1968).